

 	

Overview

	

Get Started

	

Guide

	

Extensions

	

Reference

	

Gallery

	

Blog

	

 Help

 	

 Report a Bug

	

 Ask a Question

	

 FAQ

 	Guide
	Documents
	PDF
	PDF Basics

🎉 Quarto 1.4 released! Download, Read More

 	

 Guide

 	

 Authoring

 	

 Markdown Basics

	

 Figures

	

 Tables

	

 Diagrams

	

 Videos

	

 Embeds

	

 Callout Blocks

	

 Code Annotation

	

 Article Layout

	

 Scholarly Writing

 	

 Front Matter

	

 Title Blocks

	

 Citations & Footnotes

	

 Cross-References

 	

 Basics

	

 Options

	

 Div Syntax

	

 Custom Floats

	

 Creating Citeable Articles

	

 Appendices

	

 Computations

 	

 Using Python

	

 Using R

	

 Using Julia

	

 Using Observable

	

 Inline Code

	

 Rendering Script Files

	

 Execution Options

	

 Parameters

	

 Tools

 	

 JupyterLab

 	

 JupyterLab Basics

	

 JupyterLab Extension

	

 RStudio IDE

 	

 RStudio Basics

	

 Visual Editor

 	

 Editor Basics

	

 Technical Writing

	

 Content Editing

	

 Shortcuts & Options

	

 Markdown Output

	

 VS Code

 	

 VS Code Basics

	

 Visual Editor

	

 Notebook Editor

	

 Neovim

	

 Text Editors

	

 Documents

 	

 HTML

 	

 HTML Basics

	

 HTML Code Blocks

	

 HTML Theming

	

 Including Other Formats

	

 Lightbox Figures

	

 Publishing HTML

	

 PDF

 	

 PDF Basics

	

 PDF Engines

	

 MS Word

 	

 Word Basics

	

 Word Templates

	

 Typst

 	

 Typst Basics

	

 Custom Formats

	

 Markdown

 	

 GitHub (GFM)

	

 Hugo

	

 Docusaurus

	

 All Formats

	

 Presentations

 	

 Overview

	

 Revealjs

 	

 Reveal Basics

	

 Presenting Slides

	

 Advanced Reveal

	

 Reveal Themes

	

 PowerPoint

	

 Beamer

	

 Dashboards

 	

 Overview

	

 Using Dashboards

 	

 Layout

	

 Data Display

	

 Inputs

	

 Theming

	

 Parameters

	

 Deployment

	

 Interactivity

 	

 Overview

	

 Shiny for Python

 	

 Getting Started

	

 Running Dashboards

	

 Execution Contexts

	

 Shiny for R

 	

 Getting Started

	

 Running Documents

	

 Execution Contexts

	

 Observable JS

	

 Examples

	

 Websites

 	

 Creating a Website

	

 Website Navigation

	

 Creating a Blog

	

 Website Search

	

 Website Tools

	

 About Pages

	

 Listing Pages

 	

 Document Listings

	

 Custom Listings

	

 Books

 	

 Creating a Book

	

 Book Structure

	

 Book Crossrefs

	

 Customizing Output

	

 Manuscripts

 	

 Getting Started

 	

 Authoring Manuscripts

 	

 Jupyter Lab

	

 VS Code

	

 RStudio

	

 Publishing Manuscripts

	

 Next Steps

	

 Using Manuscripts

	

 Interactivity

 	

 Overview

	

 Observable JS

 	

 Introduction

	

 Libraries

	

 Data Sources

	

 OJS Cells

	

 Shiny Reactives

	

 Code Reuse

	

 Examples

 	

 Penguins

	

 Sunburst

	

 Arquero

	

 Population

	

 NOAA CO2

	

 GitHub API

	

 Layout

	

 Shiny

 	

 K-Means

	

 Binning

	

 Data Binding

	

 Covid Map

	

 Shiny

 	

 Introduction

	

 Running Documents

	

 Execution Contexts

	

 External Resources

	

 Examples

 	

 Old Faithful

	

 K-Means

	

 Diamonds

	

 Widgets

 	

 Jupyter Widgets

	

 htmlwidgets for R

	

 Component Layout

	

 Publishing

 	

 Publishing Basics

	

 Quarto Pub

	

 GitHub Pages

	

 Posit Connect

	

 Posit Cloud

	

 Netlify

	

 Confluence

	

 Other Services

	

 Publishing with CI

	

 Projects

 	

 Project Basics

	

 Managing Execution

	

 Project Profiles

	

 Environment Variables

	

 Project Scripts

	

 Virtual Environments

	

 Using Binder With Quarto

	

 Advanced

 	

 Includes

	

 Variables

	

 Page Layout

	

 Document Language

	

 Conditional Content

	

 Notebook Filters

 On this page

 	Overview
 	Prerequisites

	Document Class
	Table of Contents
	Section Numbering
	Syntax Highlighting
	Code Annotation
	Output Options
	Citations
 	Options

	Raw LaTeX
	LaTeX Includes
	LaTeX Output
	Unicode Characters

	Edit this page
	Report an issue

	Guide
	Documents
	PDF
	PDF Basics

PDF Basics

Overview

Use the pdf format to create PDF output. For example:

title: "My document"
format:
 pdf:
 toc: true
 number-sections: true
 colorlinks: true

This example highlights a few of the options available for PDF output. This article covers these and other options in detail. See the PDF format reference for a complete list of all available options.

If you want to produce raw LaTeX output (a .tex file) rather than a PDF, all of the options documented here are still available (see the LaTeX Output section below for additional details).

Note

Note that while we will focus here exclusively on the use LaTeX to create PDFs, Pandoc also has support for creating PDFs using ConTeXt, roff ms, or HTML (via wkhtmltopdf). See the Pandoc documentation on Creating a PDF for additional details.

Prerequisites

In order to create PDFs you will need to install a recent distribution of TeX. We recommend the use of TinyTeX (which is based on TexLive), which you can install with the following command:

Terminal

quarto install tinytex

See the article on PDF Engines for details on using other TeX distributions and PDF compilation engines.

Document Class

Quarto uses KOMA Script document classes by default for PDF documents and books. KOMA-Script classes are drop-in replacements for the standard classes with an emphasis on typography and versatility.

For PDF documents this results in the following Pandoc options set by default:

format:
 pdf:
 documentclass: scrartcl
 papersize: letter

You can set documentclass to the standard article, report or book classes, to the KOMA Script equivalents scrartcl, scrreprt, and scrbook respectively, or to any other class made available by LaTeX packages you have installed.

Note

Setting your documentclass to either book or scrbook will automatically handle many of the common needs for printing and binding PDFs into a physical book (i.e., chapters start on odd pages, alternating margin sizes, etc).

See the Output Options section below for additional details on customizing LaTeX document options.

Table of Contents

Use the toc option to include an automatically generated table of contents in the output document. Use the toc-depth option to specify the number of section levels to include in the table of contents. The default is 3 (which means that level-1, 2, and 3 headings will be listed in the contents). For example:

toc: true
toc-depth: 2

You can customize the title used for the table of contents using the toc-title option:

toc-title: Contents

If you want to exclude a heading from the table of contents, add both the .unnumbered and .unlisted classes to it:

More Options {.unnumbered .unlisted}

Section Numbering

Use the number-sections option to number section headings in the output document. For example:

number-sections: true

Use the number-depth option to specify the deepest level of heading to add numbers to (by default all headings are numbered). For example:

number-depth: 3

To exclude an individual heading from numbering, add the .unnumbered class to it:

More Options {.unnumbered}

Syntax Highlighting

Pandoc will automatically highlight syntax in fenced code blocks that are marked with a language name. For example:

```python
1 + 1
```

Pandoc can provide syntax highlighting for over 140 different languages (see the output of quarto pandoc --list-highlight-languages for a list of all of them). If you want to provide the appearance of a highlighted code block for a language not supported, just use default as the language name.

You can specify the code highlighting style using highlight-style and specifying one of the supported themes. Supported themes include: arrow, pygments, tango, espresso, zenburn, kate, monochrome, breezedark, haddock, atom-one, ayu, breeze, dracula, github, gruvbox, monokai, nord, oblivion, printing, radical, solarized, and vim.

For example:

highlight-style: github

Highlighting themes can provide either a single highlighting definition or two definitions, one optimized for a light colored background and another optimized for a dark color background. When available, Quarto will automatically select the appropriate style based upon the code chunk background color’s darkness. You may always opt to specify the full name (e.g. atom-one-dark) to bypass this automatic behavior.

By default, code is highlighted using the arrow theme, which is optimized for accessibility. Here are examples of the arrow light and dark themes:

	Light
	Dark

Code Annotation

You can add annotations to lines of code in code blocks and executable code cells. See Code Annotation for full details.

Output Options

There are numerous options available for customizing PDF output, including:

	Specifying document classes and their options

	Including lists of figures and tables

	Using the geometry and hyperref packages

	Numerous options for customizing fonts and colors.

For example, here we use a few of these options:

title: "My Document"
format:
 pdf:
 documentclass: report
 classoption: [twocolumn, landscape]
 lof: true
 lot: true
 geometry:
 - top=30mm
 - left=20mm
 - heightrounded
 fontfamily: libertinus
 colorlinks: true

See the Pandoc documentation on metadata variables for LaTeX for documentation on all available options.

Citations

When creating PDFs, you can choose to use either the default Pandoc citation handling based on citeproc, or alternatively use natbib or BibLaTeX. This can be controlled using the cite-method option. For example:

format:
 pdf:
 cite-method: biblatex

The default is to use citeproc (Pandoc’s built in citation processor).

See the main article on using Citations with Quarto for additional details on citation syntax, available bibliography formats, etc.

Options

When using natbib or biblatex you can specify the following additional options to affect how bibliographies are rendered:

	Option	Description
	biblatexoptions	List of options for biblatex
	natbiboptions	List of options for natbib
	biblio-title	Title for bibliography
	biblio-style	Style for bibliography

Raw LaTeX

When creating a PDF document, Pandoc allows the use of raw LaTeX directives intermixed with markdown. For example:

\begin{tabular}{|l|l|}\hline
Age & Frequency \\ \hline
18--25 & 15 \\
26--35 & 33 \\
36--45 & 22 \\ \hline
\end{tabular}

Raw LaTeX commands will be preserved and passed unchanged to the LaTeX writer.

Warning

While it’s very convenient to use raw LaTeX, raw LaTeX is ignored when rendering to other formats like HTML and MS Word. If you plan on rendering to other formats then the example above would be better written using native markdown tables.

In some cases raw LaTeX will require additional LaTeX packages. The LaTeX Includes section below describes how to include \usepackage commands for these packages in your document.

LaTeX Includes

If you want to include additional content in your document from another file, you can use the include-in-* options:

	Option	Description
	include-in-header	Include contents of file, verbatim, at the end of the header. This can be used, for example, to include special CSS or JavaScript in HTML documents or to inject commands into the LaTeX preamble.
	include-before-body	Include contents of file, verbatim, at the beginning of the document body (e.g. after the <body> tag in HTML, or the \begin{document} command in LaTeX). This can be used to include navigation bars or banners in HTML documents.
	include-after-body	Include contents of file, verbatim, at the end of the document body (before the </body> tag in HTML, or the \end{document} command in LaTeX).

You can specify a single file or multiple files for each of these options directly, or use the file: subkey. To include raw content in the YAML header, use the text subkey. When using text:, add the | character after text: to indicate that the value is a multi-line string. If you omit file: or text:, Quarto assumes you are providing a file.

For example:

format:
 pdf:
 include-in-header:
 - text: |
 \usepackage{eplain}
 \usepackage{easy-todo}
 - file: packages.tex
 - macros.tex

Any packages specified using includes that you don’t already have installed locally will be installed by Quarto during the rendering of the document.

LaTeX Output

If you want Quarto to produce a LaTeX file (.tex) rather than a PDF (for example, if you want to do your own processing of the PDF) there are two ways to accomplish this:

	Use the latex format rather than the pdf format. For example:

format:
 latex:
 documentclass: report
 classoption: [twocolumn, landscape]
 lof: true
 lot: true

Note that all of the PDF format options documented above will also work for the latex format.

	Use the pdf format along with the keep-tex option. For example:

format:
 pdf:
 documentclass: report
 keep-tex: true

This technique will produce a PDF file for preview, but will also create a .tex file alongside it that you can do subsequent processing on.

Unicode Characters

By default, Quarto uses the xelatex engine to produce PDFs from LaTeX. xelatex has native support for unicode characters, but it is possible some customization will be required in order to properly typeset specific unicode characters. In particular, it is important that you use a font that supports the characters that you using in your document. To identify fonts on your system that support specific language characters, you can use the following command:

Terminal

fc-list :lang=<lang>

For example, to see a list of fonts that support Japanese characters, use:

Terminal

fc-list :lang=ja

Select a font name from the list and use that as the document’s main font, like:

title: Unicode test
format: pdf
mainfont: "Hiragino Sans GB"

Test Document

青黑體簡體中文,ヒラギノ角

 Publishing HTML

 PDF Engines

Proudly supported by

 	

About

	

FAQ

	

License

	

Trademark

 	Edit this page
	Report an issue

 	

	

	

